〔ハ行〕

バックグラウンド(測定)

測定対象以外からの放射線による寄与分をバックグラウンドという。

浜岡原子力発電所周辺環境放射能調査では、緊急事態に備え、緊急時モニタリングの結果を適切に評価できるよう、平常時における発電所周辺環境の放射線量及び放射能の水準を把握しておくための測定をバックグラウンド測定と呼んでいる。

半減期

放射性核種の崩壊によって、放射能が半分になるまでの時間をいう。半減期が長いほど、その放射能は減少しにくい。半減期の 10 倍の時間が経過すれば、放射能量はおよそ 1000 分の 1 になる。

被ばく

人体が放射線を受けること。体の外にある放射性核種からの放射線を受ける外部被ばくと体の中に取り込んだ放射性核種からの放射線を受ける内部被ばくとがある。被ばくの度合いは線量で表す。

標準偏差

統計において、データのばらつきあるいは散らばりの程度を表す一つの尺度。 データがn個あるとき、平均Xは次式で示される。

$$\overline{X} = \frac{\left(X_1 + X_1 + \dots + X_1\right)}{n}$$

また、次式で示す \mathbf{S}^2 を分散と定義し、この分散の平方根 \mathbf{S} を標準偏差という。

$$S^{2} = \frac{1}{n} \sum_{i=1}^{n} \left(X_{i} - \overline{X} \right)^{2}$$

放射線計測の場合、放射性核種の崩壊に伴う放射線放出が、常に一定の時間間隔で繰り返される事象ではなく、偶発的な事象であるため、計数は一定値ではなく常にばらつきが生じる。このばらつきの程度が標準偏差で表され、計数の平方根で求められる。これを計数誤差(統計誤差)と呼ぶこともある。

フォールアウト

核爆発実験等によって生成された人工放射性核種が、大気中に拡散し、塵埃などとと もに、地上に降下する放射性降下物をいう。

プラスチックシンチレーション検出器

ポリスチレン等(溶媒)にターフェニル等(溶質)を溶かした固溶体をシンチレータ(蛍光体)とした検出器。蛍光減衰時間が短く、 β 線、 α 線、陽子線等の荷電性放射線の短い時間の測定に用いられる。

〔ラ行〕

ラドンの崩壊生成物

ラドン(ウラン系列に属する²²²Rn)は、地殻中に存在するウラン 238 が多段階的に崩壊を繰り返すことで生成される自然の放射性核種である。ラドンは、希ガス元素であるため、生成すると一部が地表面から大気中へと散逸する。

ラドンの半減期は3.8 日で、ポロニウム、鉛、ビスマス等の放射性の崩壊生成物へと変化し、周囲に存在する大気浮遊塵に吸着する。中でもラドンの崩壊生成物である鉛214 やビスマス214 は、大気中濃度が比較的高く、かつ、γ線を放出することから、空間放射線量に対する寄与が大きく、環境放射線モニタリングにおいて重要な核種である。特に、降雨の時は、これらを含む浮遊塵が地表に沈着するため、地表付近の空間線量率が大幅に増加することがある。一方で、これらの見かけ上の半減期は約30分と短いため、数時間が経過すると、その寄与は大幅に減少する。

ラドンの崩壊生成物に起因する空間放射線量の寄与は、大陸性の気団が到来する時に大きく、ラドンとその崩壊生成物をあまり含まない海洋性の気団が到来する時に小さくなる傾向がある。そのため、空間放射線量の増減やダストモニタによる測定結果が、大気の流跡線解析の結果から説明できることがある。

レインアウト

雲中で雨滴に取り込まれた放射性物質が、雨滴の落下により雲中から除去される現象をいう。

同位体(同位元素又はアイソトープ)

原子番号は元素に固有であり、同じ元素であれば、その原子核に含まれる陽子の数は 等しい。同じ元素であっても、原子量(質量数)が異なる(中性子の数が異なる)もの を同位体(同位元素又はアイソトープ)という。

等価線量

同値の吸収線量であっても、放射線の種類やエネルギーにより人体に対する影響の現れかたは異なる。照射により人体組織に与えられる影響を、同一尺度で定量するため、組織・臓器にわたって平均し、線質について加重した吸収線量を等価線量という。等価線量は、確率的影響のリスクを各組織・各臓器を対象として考慮するために用いる。単位はシーベルト(Sv)で表す。

東電事故

2011 年(平成23年)3月11日に発生した東北地方太平洋沖地震に起因した東京電力 ㈱福島第一原子力発電所の事故のこと。炉心溶融や水素爆発によって原子炉圧力容器や 原子炉建屋が損壊し、原子燃料に含まれる大量の核分裂生成物が環境中へと放出された。 放出された放射性物質は、大気輸送と降雨に伴う地表面への降下により、日本各地の 地表面に降下物として沈着した。そのため、降下物試料や農畜海産物等の環境試料の調 査において、その影響が現在も見られている。

トリチウム (fl)

原子番号 1、質量数 3 で、水素(H)の放射性の同位元素で、三重水素とも呼ばれる。 半減期 12.3 年で崩壊し、極めてエネルギーの低いベータ線を放出する。空気と宇宙線と の反応により、自然生成される。通常は水蒸気又は水の形で存在することが多い。過去 の核爆発実験でも大量に放出された。

トロンの崩壊生成物

トロン (トリウム系列に属するラドン 220) は、地殻中に存在するトリウム 232 が多段階的に崩壊を繰り返すことで生成される自然の放射性核種である。トロンは、希ガスであるため、生成すると一部が地表面から大気中へと散逸する。

散逸したトロンは崩壊し、ポロニウム、鉛、ビスマス等へと変化し、周囲に存在する 大気浮遊塵に吸着する。

トロンの崩壊生成物の見かけ上の半減期は約 11 時間であるため、大気が安定している場合など、トロンが拡散しにくい気象条件では、集塵修了 6 時間後の全ベータ放射能濃度が高くなる場合がある。

〔ナ行〕

年線量限度

放射線・放射能を扱う施設が遵守しなければならない業務従事者や一般公衆に与える 放射線被ばくの1年間の制限値である。

国際放射線防護委員会(ICRP)の勧告により公衆の年線量限度は1ミリシーベルトとされている。

国内では、事業所境界の線量限度や排気及び排水の基準について、年1ミリシーベルトを基に設定している。

プルトニウム

原子番号 94 の元素で、自然界には存在しない放射性核種である。体内に取り込まれると、骨や肝臓に集積される。ウランの核反応により生成し、プルトニウム自体が核分裂することから原子燃料として再利用することができる。環境中のプルトニウムは、主として、過去の大気圏内核爆発実験による放射性降下物に由来するものである。

平常時モニタリング

原子力施設の平常時の周辺環境における空間放射線量率及び放射能を把握しておくことにより、緊急時モニタリングに備えておくとともに、原子力施設の異常を早期に検出し、その周辺住民及び周辺環境への影響を評価することをいう。

平常の変動幅

平常の変動幅は、環境放射能測定結果をスクリーニングし、原因調査に移行するための基準として設定される。平常の変動幅を上回ったとしても、直ちに安全性を判断するものではない。

ベクレル

放射能を表す単位。

ある物質中で 1 秒間に 1 個の原子核が崩壊した時に、その物質には 1 ベクレル (Bq) の放射能があると定義する。

例えば、1Bq/kg 生とは、生試料 1kg あたりに、平均して 1 秒間に 1 個が崩壊する量の放射性核種が含まれることを示す。

β (ベータ) 線

崩壊によって原子核から電子が外に飛び出す場合があり、その電子の流れをいう。物質の透過力は γ 線ほど大きくない。ストロンチウム 90 やトリチウムはこの β 線のみを放出する核種である。中性子が過剰の原子核は β 線 (電子)、陽子が過剰な原子核は β 線 (陽電子)を放出する傾向があり、核分裂生成物の多くは中性子過剰であるため、 β 線を放出するものが多い。

ベリリウム 7 (⁷ Be)

原子番号 4 の元素で、宇宙線と大気上層の窒素や酸素との核破砕反応によって恒常的 に生成される自然放射性核種(半減期約53日)である。大気中の塵に付着し、降雨等に よって地表に降下するため、環境放射能調査では、大気中浮遊塵や降下物の測定上の指 標として用いている。

崩壊

不安定な原子核が、放射線を出し、他の原子核に変わること。たとえば、ウラン 238 は多段階的に崩壊を繰り返すことによって、最後に安定な鉛 206 となる。崩壊の機構や放出する放射線の種類により、 α 崩壊、 β 崩壊、電子捕獲、核分裂、核異性体転移等がある。壊変ともいう。

方向特定可能型検出器

通常のNaI(Tl)シンチレーション検出器は円柱型であるが、120°の扇形3つに分割された形状を有し、ガンマ線の入射方向の特定が可能な検出器を方向特定可能型検出器という。

放射化学分析

化学的方法によって、環境試料中に含まれる目的の放射性核種が属する元素を選択的に分離し、その放射能を調べること。透過力の弱い α 線やエネルギーによる分別が困難な β 線を測定する場合に、測定試料の減容や妨害放射性元素の除去を目的として行われる。本調査においては、放射化学分析によってストロンチウム 90(イットリウム 90)を単離し、低バックグラウンドガスフロー測定装置で測定している。

放射化生成物

安定核種に中性子を照射させると核反応が起こり、放射性核種が生成される。これを 放射化といい、生成された核種を放射化生成物という。原子炉内では構造材が放射化さ れて、コバルト60やマンガン54などが生成される。

放射性核種

地球上のすべての物質は原子でできており、原子は原子核とその周りにある電子で構成されている。原子核は陽子と中性子で構成されている。

原子核には、安定な原子核と不安定な原子核が存在し、安定な原子核は「安定核種」 といい、不安定な原子核は原子核が壊れる(壊変する)ときに放射線を放出するため、 「放射性核種」といわれる。「放射性物質」と同義で使われることもある。

放射性物質

放射線を出す能力、すなわち「放射能」をもつ物質をいう。放射性物質、放射線及び 放射能の関係を電球に例えると、「電球」が放射性物質、電球から出る「光線」が放射線、 電球の「光を出す能力」が放射能に対応する。

放射線

直接又は間接に空気を電離する能力をもつもので、 γ 線や X 線等の電磁波と、 α 線や β 線等の粒子線とがある。

放射線量

一般的に、放射線被ばくの量や物質が放射線から吸収したエネルギー量の程度の総称として使われる。単に、線量とも呼ばれる。なお、法令では、放射線の防護のために用いる実効線量等のいろいろな線量の総称としている。

放射能

放射性核種が崩壊して放射線を出す性質又は能力をいう。放射性核種の量を示す言葉 として用いられることもある。単位は、ベクレルで表す。

放射平衡

ある放射性核種(親核種)が崩壊して生成する核種(娘核種)が放射性核種である場合、娘核種の放射能は時間とともに増加し、半減期の5倍程度以後は親核種の放射能と一定の関係になる。親核種の半減期に比べて娘核種の半減期が極めて短い場合は、永続平衡となり、両核種の放射能は等しい。そうでない場合は、娘核種の放射能は親核種の放射能より大きくなる。

放水口モニタ

発電所で発生した排水(放射性液体廃棄物、洗濯水等)を冷却用海水とともに海域へ 放出する際、放水路を流れる放水の一部を取り出して排水中のγ線の計数率を測定する 設備である。浜岡原子力発電所の4か所の放水口に設置している。

[マ行]

マイクロウェーブ分解装置

テフロン系の密閉容器に試料を入れ、酸を加えて、マイクロ波により加熱分解する装置をいう。

モニタリングポイント

積算線量を測定するため、積算線量計を内装した収納箱を設置した場所(地点)のことをいう。

モニタリングステーション・モニタリングポスト

線量率の連続モニタに加えて、ダストモニタや気象状況を調べる観測装置等を備えた 野外測定設備である。

発電所周辺 10km 圏内の 14 箇所 (ダストモニタは、うち 5 箇所) に設置しているものをモニタリングステーションといい、10km 以遠に設置しているものをモニタリングポストという。名称は異なるが、装備している機器や機能に差はない。

[ヤ行]

ョウ素 131 (¹³¹I)

ョウ素の放射性同位体の1つで、質量数が131の同位体を指す。半減期が約8日で β 線及び γ 線を放出する。体内に取り込まれると、甲状腺に集まりやすい性質がある。

預託線量

放射性物質摂取後 50 年間(子供に対しては摂取時から 70 歳までの年数)に受ける内部被ばくの量を実効線量又は等価線量で表現したものをいい、それぞれ預託実効線量又は預託等価線量という。モニタリングにおいては、年度内に摂取した放射性核種による預託実効線量(または等価線量)を当該年度内の外部被ばくによる実効線量(または等価線量)と合算し、被ばく線量の推定を行っている。